Blog

The Quest for 700: Weekly GMAT Challenge (Answer)

Yesterday, Manhattan GMAT posted a GMAT question on our blog. Today, they have followed up with the answer:

According to the question, xn is “the probability of selecting at random an integer with an odd number of unique positive factors from among the positive integers less than or equal to n2.” That definition contains a lot of words. Let’s simplify by focusing on just one value: x1.

Plug in 1 in place of n. Now, because we are examining a complicated probability scenario, we should ask ourselves two questions.

(a) What is the pool we are picking from?
We are picking from among the positive integers less than or equal to 12—in other words, we are picking from this group: {1}.

(b) What would success be?
Success would be picking an integer “with an odd number of unique positive factors.” Well, 1 has just one “unique positive factor” (namely, 1 itself), so 1 is a successful pick.
Thus, the probability of picking 1 out of the set {1} is 100%, or 1. Now we know that x1 = 1. (By the way, since none of the remaining probabilities can be negative, we can rule out (A) at this point.)

What about x2? Let’s start making a table and looking for the pattern. What will help at this point is to decipher one bit of code: integers with “an odd number of unique positive factors” are perfect squares. Simply put, perfect squares always have a single unpaired factor – the square root. For instance, 1 has just 1 factor. 4 has 3 factors (1, 2, and 4), as does 9. 16 has 5 factors (1, 2, 4, 8, and 16, where 1 and 16 form a factor pair, 2 and 8 form a factor pair, and 4 is the odd man out).

So we are really looking for the probability of picking a perfect square out of the positive integers less than or equal to n2.

n
Positive integers ? n2
Count of those integers
Perfect squares
Count of perfect squares
Probability
2
{1, 2, 3, 4}
4
{1, 4}
2
2/4 = 1/2
3
{1, 2, …, 9}
9
{1, 4, 9}
3
3/9 = 1/3
n
{1, 2, …, n}
n
{1, 4, … n2}
n
n/n2 = 1/n

So we are really just adding up 1 + 1/2 + 1/3 + 1/4 + 1/5. We don’t need an exact number—we just need to know what integers that sum falls between. At this point, we might be strategic and grab the middle fractions. 1/2 + 1/3 + 1/4 is just a little more than 1 (since 1/2 + 1/4 + 1/4 would be exactly 1). Adding 1/5 would not get us very far toward 2; this sum would be between 1 and 2. (If we compute 1/2 + 1/3 + 1/4 + 1/5 exactly, we get 30/60 + 20/60 + 15/60 + 12/60 = 77/60, which is definitely between 1 and 2.)

Finally, don’t forget to add in x1 = 1. Thus, the sum we want (1 + 1/2 + 1/3 + 1/4 + 1/5) is between 2 and 3.

This problem combines several different topics—divisibility, probability, and fractions. You’ll encounter such “hybrid” problems at the harder end of the GMAT. Not every hard problem is a hybrid, but hybrids tend to be hard, because they force you to solve more than one unrelated problem quickly and correctly.

The correct answer is C.



onTrack by mbaMission

A first-of-its-kind, on-demand MBA application experience that delivers a personalized curriculum for you and leverages interactive tools to guide you through the entire MBA application process.

Get Started!


Upcoming Events


Upcoming Deadlines

  • LBS (Round 2)
  • Penn Wharton (Round 2)
  • Ohio Fisher (Round 2)
  • Cambridge Judge (Round 3)
  • Carnegie Mellon Tepper (Round 2)
  • Dartmouth Tuck (Round 2)
  • Emory Goizueta (Round 2)
  • Georgetown McDonough (Round 2)
  • Harvard Business School (Round 2)
  • Michigan Ross (Round 2)
  • Ocford Saïd (Round 4)
  • UCLA Anderson (Round 2)
  • UW Foster (Round 2)

Click here to see the complete deadlines


2024–2025 MBA Essay Tips

Click here for the 2023–2024 MBA Essay Tips


MBA Program Updates

Explore onTrack — mbaMission’s newest offering allowing you to learn at your own pace through video. Learn more