Blog

The Quest for 700: Weekly GMAT Challenge (Answer)

Yesterday, Manhattan GMAT posted a GMAT question on our blog. Today, they have followed up with the answer:

The easiest way to solve this problem is to pick convenient numbers for p and n. Say that p = 3 and n = 2, to follow the constraint that p > n. Then we need to take the difference of two quantities:
(1) The average of 2 consecutive multiples of 3 (starting with 3), and
(2) The average of 3 consecutive multiples of 2 (starting with 2).

The first quantity is the average of 3 and 6. That number is 4.5.

The second quantity is the average of 2, 4, and 6. That number is 4.

The difference between these two numbers is 0.5. We now look for the answer choice that yields 0.5 when p = 3 and n = 2. The only answer choice that does so is (pn)/2.

Proving that this answer is correct in the abstract is significantly harder, but not outlandish.

The sum of n consecutive multiples of p = p + 2p + 3p + … + np.

Factor out a p to get p(1 + 2 + 3 + … + n). Now, the sum of n consecutive integers starting at 1 is the average of those integers times the number of integers.

The average of the integers is (n+ 1)/2. The number of integers is n.

So the sum of 1 through n is n(n + 1)/2. This is a formula that you shouldn’t memorize, but you should be distantly familiar with it, as passing acquaintances.

Thus, the sum of n consecutive multiples of p is pn(n + 1)/2, and the average of those n multiples is that sum divided by n, or p(n + 1)/2.

A similar argument gives you the average of p consecutive multiples of n. You can just switch p and n in the formula above: this average is n(p + 1)/2.

Subtracting these two gives you (pn)/2.

The correct answer is B.



onTrack by mbaMission

A first-of-its-kind, on-demand MBA application experience that delivers a personalized curriculum for you and leverages interactive tools to guide you through the entire MBA application process.

Get Started!


Upcoming Events


Upcoming Deadlines

  • LBS (Round 2)
  • Penn Wharton (Round 2)
  • Ohio Fisher (Round 2)
  • Cambridge Judge (Round 3)
  • Carnegie Mellon Tepper (Round 2)
  • Dartmouth Tuck (Round 2)
  • Emory Goizueta (Round 2)
  • Georgetown McDonough (Round 2)
  • Harvard Business School (Round 2)
  • Michigan Ross (Round 2)
  • Ocford Saïd (Round 4)
  • UCLA Anderson (Round 2)
  • UW Foster (Round 2)

Click here to see the complete deadlines


2024–2025 MBA Essay Tips

Click here for the 2023–2024 MBA Essay Tips


MBA Program Updates

Explore onTrack — mbaMission’s newest offering allowing you to learn at your own pace through video. Learn more