Blog

The Quest for 700: Weekly GMAT Challenge (Answer)

Yesterday, Manhattan GMAT posted a 700 level GMAT question on our blog. Today, they have followed up with the answer:

We can solve this problem either by algebra or by number-plugging. Let’s use algebra. All four variables can be expressed in terms of just one variable, since they are consecutive integers and we know their order. If we keep p as the basic variable, then q = p + 1, r = p + 2, and s = p + 3.

Now we can rephrase the question:
Is pr < qs?
Is p(p + 2) < (p + 1)(p + 3)?
Is p2 + 2p < p2 + 4p + 3?
Is 2p < 4p + 3?
Is 0 < 2p + 3?
Is -3 < 2p?
Is -3/2 < p?

Since p is an integer, the question is answered “yes” if p = -1 or greater, and “no” if p = -2 or less.

Statement (1): SUFFICIENT.
We rephrase the statement similarly.
pq < rs
p(p + 1) < (p + 2)(p + 3)
p2 + p < p2 + 5p + 6
0 < 4p + 6
0 < 2p + 3
-3/2 < p

This is precisely the same condition as asked in the question. Thus, we can answer the question definitively.

Statement (2): INSUFFICIENT.
Again, we rephrase the statement similarly.
ps < qr
p(p + 3) < (p + 1)(p + 2)
p2 + 3p < p2 + 3p + 2
0 < 2

Since 0 is always less than 2, no matter the value of p, the statement is always true. Thus, we do not gain any information that would help us answer the question.

The correct answer is A: Statement (1) is sufficient, but statement (2) is not.



onTrack by mbaMission

A first-of-its-kind, on-demand MBA application experience that delivers a personalized curriculum for you and leverages interactive tools to guide you through the entire MBA application process.

Get Started!


Upcoming Events


Upcoming Deadlines

  • LBS (Round 2)
  • Penn Wharton (Round 2)
  • Ohio Fisher (Round 2)
  • Cambridge Judge (Round 3)
  • Carnegie Mellon Tepper (Round 2)
  • Dartmouth Tuck (Round 2)
  • Emory Goizueta (Round 2)
  • Georgetown McDonough (Round 2)
  • Harvard Business School (Round 2)
  • Michigan Ross (Round 2)
  • Ocford Saïd (Round 4)
  • UCLA Anderson (Round 2)
  • UW Foster (Round 2)

Click here to see the complete deadlines


2024–2025 MBA Essay Tips

Click here for the 2023–2024 MBA Essay Tips


MBA Program Updates

Explore onTrack — mbaMission’s newest offering allowing you to learn at your own pace through video. Learn more