Blog

The Quest for 700: Weekly GMAT Challenge (Answer)

Yesterday, Manhattan GMAT posted a 700 level GMAT question on our blog. Today, they have followed up with the answer:

The brute-force way to solve this problem is literally to add up the first 15 positive perfect squares, from 1 to 225, inclusive. This is not necessarily completely out of bounds, given that we only have to sum up 15 numbers, all of which we should know already, and several of which are small. However, we should look for a shortcut using the formula.

Unfortunately, there is an unknown constant in the formula, but by using a small test number, we can solve for this constant. You can certainly pick n = 1, since it is a positive integer:

12 = 13/3 + c12 + 1/6

1 = 1/3 + c + 1/6

1/2 = c

If you feel uncomfortable picking n = 1, you can pick n = 2 and come to the same result almost as quickly.

Now, we plug n = 15 into the formula and solve:

12 + 22 + … + 152 = 153/3 + 152/2 + 15/6

= 15×15×15/3 + 15×15/2 + 15/6

= 15×15×5 + 15×15/2 + 5/2

= 225×5 + 225/2 + 5/2

= 1,125 + 230/2

= 1,125 + 115

= 1,240

The correct answer is (C).



onTrack by mbaMission

A first-of-its-kind, on-demand MBA application experience that delivers a personalized curriculum for you and leverages interactive tools to guide you through the entire MBA application process.

Get Started!


Upcoming Events


Upcoming Deadlines

  • LBS (Round 2)
  • Penn Wharton (Round 2)
  • Ohio Fisher (Round 2)
  • Cambridge Judge (Round 3)
  • Carnegie Mellon Tepper (Round 2)
  • Dartmouth Tuck (Round 2)
  • Emory Goizueta (Round 2)
  • Georgetown McDonough (Round 2)
  • Harvard Business School (Round 2)
  • Michigan Ross (Round 2)
  • Ocford Saïd (Round 4)
  • UCLA Anderson (Round 2)
  • UW Foster (Round 2)

Click here to see the complete deadlines


2024–2025 MBA Essay Tips

Click here for the 2023–2024 MBA Essay Tips


MBA Program Updates

Explore onTrack — mbaMission’s newest offering allowing you to learn at your own pace through video. Learn more