Blog

The Quest for 700: Weekly GMAT Challenge (Answer)

Yesterday, Manhattan GMAT posted a GMAT question on our blog. Today, they have followed up with the answer:

We cannot simplify the given expression very much, because the denominator (which is a sum, a + 3b) is not a factor of the numerator. If we really wanted to, we could split the numerator and write the expression as a sum:

4a/(a + 3b) + 6b/(a + 3b) = ?

Or we could leave the question as is. Either way, be sure not to cancel any of the coefficients, because the denominator is a sum – we can’t simply cancel the 6 in the numerator with the 3 in the denominator, for instance.

Statement 1: INSUFFICIENT. This gives us a relationship between a and b. However, if we use it to solve for one of the variables and then we substitute that expression into the question, we’ll quickly see that we will not get a single number:

From the statement: a = 6 + 3b

Substitute into the original question:

[4(6 + 3b) + 3b]/(6 + 3b + 3b) = ?

We can stop here if we see that the denominator is 6 + 6b, which will not cancel with the numerator of the combined fraction (which equals 24 + 18b).

Statement 2: SUFFICIENT. We can get a constant ratio between a and b, which will actually cancel in the question.

From the statement:

2a/(a + 3b) = 4

2a = 4a + 12b

-2a = 12b

a = -6b

Substitute into the question:

[4(-6b) + 6b]/(-6b + 3b)

= (-24b + 6b)/(-3b)

= (-18b)/(-3b)

= 6

Note that it is okay to cancel out the b’s, since ab ? 0 and thus neither variable equals 0.

As long as we have a constant ratio between a and b, we will get a number out of an expression such as (4a + 6b)/(a + 3b).

The correct answer is (B): Statement 2 is sufficient, but Statement 1 is not sufficient.



onTrack by mbaMission

A first-of-its-kind, on-demand MBA application experience that delivers a personalized curriculum for you and leverages interactive tools to guide you through the entire MBA application process.

Get Started!


Upcoming Events


Upcoming Deadlines

  • HEC Paris (Round 3)
  • Ivey Business School (Round 2)
  • Esade (Round 2)
  • Villanova (Round 1)
  • Ohio Fisher (Round 2)
  • Penn State Smeal (Round 2)
  • HEC Paris (Round 4)

Click here to see the complete deadlines


2024–2025 MBA Essay Tips

Click here for the 2023–2024 MBA Essay Tips


MBA Program Updates

Explore onTrack — mbaMission’s newest offering allowing you to learn at your own pace through video. Learn more